The Cauchy integral for differential forms
نویسندگان
چکیده
منابع مشابه
New Weighted Integral Inequalities for Differential Forms in Some Domains
Differential forms are interesting and important generalizations of real functions and distributions. Many interesting results and applications of differential forms have recently been found in some fields, such as tensor analysis, potential theory, partial differential equations and quasiregular mappings, see [B], [C], [D1], [HKM], [I], [IL] and [IM]. In many cases, we need to know the integra...
متن کاملCauchy Integral Theorem
where we use the notation dxI for (1.4) dxI = dxi1 ∧ dxi2 ∧ ... ∧ dxik for I = {i1, i2, ..., ik} with i1 < i2 < ... < ik. So ΩX is a free module over C ∞(X) generated by dxI . Obviously, Ω k X = 0 for k > n and ⊕ΩX is a graded ring (noncommutative without multiplicative identity) with multiplication defined by the wedge product (1.5) ∧ : (ω1, ω2)→ ω1 ∧ ω2. Note that (1.6) ω1 ∧ ω2 = (−1)12ω2 ∧ ω...
متن کاملCauchy non-integral formulas
We study certain generalized Cauchy integral formulas for gradients of solutions to second order divergence form elliptic systems, which appeared in recent work by P. Auscher and A. Rosén. These are constructed through functional calculus and are in general beyond the scope of singular integrals. More precisely, we establish such Cauchy formulas for solutions u with gradient in weighted L2(R 1+...
متن کاملAn effective method for approximating the solution of singular integral equations with Cauchy kernel type
In present paper, a numerical approach for solving Cauchy type singular integral equations is discussed. Lagrange interpolation with Gauss Legendre quadrature nodes and Taylor series expansion are utilized to reduce the computation of integral equations into some algebraic equations. Finally, five examples with exact solution are given to show efficiency and applicability of the method. Also, w...
متن کاملAnalytic capacity, rectifiability, and the Cauchy integral
A compact set E ⊂ C is said to be removable for bounded analytic functions if for any open set containing E, every bounded function analytic on \ E has an analytic extension to . Analytic capacity is a notion that, in a sense, measures the size of a set as a non removable singularity. In particular, a compact set is removable if and only if its analytic capacity vanishes. The so-called Painlevé...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1967
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1967-11744-0